organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Phenothiazine-picric acid (1/1)

William T. A. Harrison,^a* M. A. Ashok,^b H. S. Yathirajan^b and B. Narayana Achar^b

^aDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and ^bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India Correspondence e-mail: w.harrison@abdn.ac.uk

Received 18 June 2007; accepted 20 June 2007

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.047; wR factor = 0.097; data-to-parameter ratio = 13.9.

The title compound, $C_{12}H_9NS\cdot C_6H_3N_3O_7$, is a 1:1 adduct of neutral phenothiazine (pz) and picric acid (pa). A weak bifurcated $N-H\cdots(O,O)$ hydrogen bond links the pa and pz species and an intramolecular $O-H\cdots O$ bond occurs within the pa molecule. The O atoms of one of the pa nitro groups are disordered over two positions of almost equal [0.54 (2): 0.46 (2)] occupancy. The dihedral angle between the pz aromatic ring planes is 11.81 (10)°.

Related literature

For background, see: Bell *et al.* (1968); McDowell (1976); van de Waal & Feil (1977); Sun *et al.* (2004); Feinberg & Snyder (1975); Amaral *et al.* (2001). For related literature, see: Herbstein & Kaftory (1976).

Experimental

Crystal data $C_{12}H_9NS \cdot C_6H_3N_3O_7$ $M_r = 428.38$ Orthorhombic, $P2_12_12_1$ a = 7.2723 (7) Å b = 8.9800 (9) Å c = 27.549 (3) Å

 $V = 1799.1 (3) Å^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 0.23 \text{ mm}^{-1} \text{ T} = 295 (2) \text{ K} \text{ 0.30 \text{ } 0.10 \text{ mm}} \text{ mm} \text{}

Data collection

Bruker SMART 1000 CCD diffractometer Absorption correction: none 11121 measured reflections

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.047 & \Delta\rho_{max} = \\ wR(F^2) &= 0.097 & \Delta\rho_{min} = \\ S &= 0.89 & Absolut \\ 4124 \text{ reflections} & 1716 \\ 296 \text{ parameters} & Flack parameters \\ H \text{ atoms treated by a mixture of independent and constrained refinement} \end{split}$$

4124 independent reflections 2300 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.044$

 $\begin{array}{l} \Delta \rho_{max} = 0.18 \ e \ \mathring{A}^{-3} \\ \Delta \rho_{min} = -0.17 \ e \ \mathring{A}^{-3} \\ Absolute \ structure: \ Flack \ (1983), \\ 1716 \ Friedel \ pairs \\ Flack \ parameter: \ 0.12 \ (10) \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdots O6A$ $N1-H1\cdots O6B$ $N1-H1\cdots O7A$ $N1-H1\cdots O7B$ $O1-H2\cdots O2$	0.81 (3) 0.81 (3) 0.81 (3) 0.81 (3) 0.95 (3)	2.74 (4) 2.77 (3) 2.60 (3) 2.56 (3) 1.69 (3)	3.520 (7) 3.533 (8) 3.339 (10) 3.311 (11) 2.550 (3)	162 (3) 157 (3) 151 (3) 156 (3) 148 (3)

Data collection: *SMART* (Bruker, 1997); cell refinement: *SAINT* (Bruker, 1997); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

MAA thanks the University of Mysore for the provision of research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2440).

References

- Amaral, L., Kristiansen, J. E., Viveiros, M. & Atouguia, J. (2001). J. Antimicrob. Chemother. 47, 505–511.
- Bell, J. D., Blount, J. F., Briscoe, O. V. & Freeman, H. C. (1968). Chem. Commun. pp. 1656–1657.
- Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Feinberg, A. P. & Snyder, S. H. (1975). Proc. Natl Acad. Sci. USA, 72, 1899– 1903.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Herbstein, F. H. & Kaftory, M. (1976). Acta Cryst. B32, 387-396.
- McDowell, J. J. H. (1976). Acta Cryst. B32, 5-10.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sun, D., Rosokha, S. V. & Kochi, J. K. (2004). J. Am. Chem. Soc. 126, 1388– 1401.
- van de Waal, B. W. & Feil, D. (1977). Acta Cryst. B33, 314-315.

Acta Cryst. (2007). E63, o3322 [doi:10.1107/S1600536807030176]

Phenothiazine-picric acid (1/1)

W. T. A. Harrison, M. A. Ashok, H. S. Yathirajan and B. Narayana Achar

Comment

Phenothiazine, $C_{12}H_9NS$, has a number of interesting features. It is a potent antibacterial agent (Feinberg & Snyder, 1975; Amaral *et al.*, 2001) and shows remarkable redox properties, easily generating a stable $C_{12}H_9NS^+$ radical cation that can be crystallized (Sun *et al.*, 2004). Phenothiazine is polymorphic: as well as a $P2_1$ monoclinic form (Bell *et al.*, 1968), a second modification shows unusual twinning, with the true $P2_1/c$ monoclinic structure (van de Waal & Feil, 1977) masquerading as orthorhombic (McDowell, 1976).

Here we describe the synthesis and structure of the title compound a 1:1 adduct of neutral phenothiazine and picric acid (Fig. 1).

The phenothiazine molecule shows a rather small deviation from planarity [dihedral angle between the C1—C6 and C7—C12 rings = $11.81 (10)^{\circ}$] and the C—S distances [C1—S1 = 1.762 (3) Å, C12—S1 = 1.747 (3) Å] are consistent with the presence of the neutral molecule, rather than the radical cation (Sun *et al.*, 2004), in (I). With respect to the mean plane of the C1—C6 ring, N1 and S1 deviate by 0.034 (5) and 0.122 (4) Å, respectively. For the C7—C12 ring, the equivalent deviations are 0.038 (5) and 0.028 (4) Å.

The significant variation of the C—C bond lengths around the picric acid aromatic ring can be related to the contributions of various resonance forms involving the nitro groups (Herbstein & Kaftory, 1976). The N4/O6/O7 nitro group is disordered over two orientations, with almost equal occupancies of 0.54 (2):0.46 (2). The dihedral angle between the disorder components is 78 (1)°. The other two nitro groups are almost co-planar with the benzene ring.

The two constituents of the title adduct interact by a weak, bifurcated N—H···(O,O) bond from phenothiazine to the disordered nitro group of the picric acid, with both disorder components resulting in similar H bond geometries. A typical (Herbstein & Kaftory, 1976) intramolecular O—H···O hydrogen bond occurs within the picric acid molecule. The disorder of the nitro group appears to be correlated with close intermolecular O···O contacts involving the picric acid molecules in the a unit-cell direction.

Experimental

Phenothiazine (0.9970 g, 0.05 mol) and picric acid (1.1468 g, 0.05 mol) were dissolved in chloroform separately and the solutions were mixed and stirred in a beaker. After one week, black needle shaped crystals were harvested and washed well with carbon tetrachloride and dried in a vacuum desiccator over P_2O_5 . Dark, very soft, rods of the title compound were recrystallized from CHCl₃. When the rods are crushed and smeared on a glass slide, a dark orange colour is apparent. They melt with decomposition at 393 K.

Refinement

The N4 nitro group is disordered over two orientations with populations 0.54 (2):0.46 (2) (sum constraind to unity).

The O– and N-bound H atoms were located in difference maps and their positions were freely refined with $U_{iso}(H) = 1.2U_{eq}(\text{carrier})$.

The C-bound H atoms were geometrically placed (C—H = 0.93 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(carrier)$.

Figures

Fig. 1. View of the molecular structure showing 50% displacement ellipsoids (arbitrary sphere for the H atom). The hydrogen bonds are shown as double-dashed lines. Only one orientation of the disordered N4/O6/O7 nitro group is shown.

Phenothiazine-picric acid (1/1)

Z = 4
$F_{000} = 880$
$D_{\rm x} = 1.582 {\rm Mg m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
$\mu = 0.23 \text{ mm}^{-1}$
T = 295 (2) K
Rod, very dark orange
$0.30 \times 0.10 \times 0.10 \text{ mm}$

Data collection

Bruker SMART1000 CCD diffractometer	2300 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.044$
Monochromator: graphite	$\theta_{\text{max}} = 27.6^{\circ}$
T = 295(2) K	$\theta_{\min} = 4.3^{\circ}$
ω scans	$h = -9 \rightarrow 9$
Absorption correction: none	$k = -7 \rightarrow 11$
11121 measured reflections	$l = -35 \rightarrow 35$
4124 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: difmap (O-H and N-H) and geom (C-H)
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.047$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0411P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.097$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 0.89	$\Delta \rho_{max} = 0.18 \text{ e} \text{ Å}^{-3}$
4124 reflections	$\Delta \rho_{min} = -0.16 \text{ e } \text{\AA}^{-3}$
296 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 1716 Friedel pairs
0	$F_{1} = 1$

Secondary atom site location: difference Fourier map Flack parameter: 0.12 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.6577 (3)	0.5800 (3)	0.33533 (10)	0.0512 (7)	
C2	0.6216 (4)	0.6559 (4)	0.29269 (11)	0.0675 (9)	
H2A	0.6261	0.6059	0.2632	0.081*	
C3	0.5791 (5)	0.8049 (5)	0.29381 (15)	0.0800 (10)	
Н3	0.5542	0.8554	0.2651	0.096*	
C4	0.5735 (4)	0.8792 (4)	0.33742 (15)	0.0767 (9)	
H4	0.5426	0.9797	0.3382	0.092*	
C5	0.6135 (4)	0.8054 (3)	0.37971 (12)	0.0664 (9)	
Н5	0.6124	0.8572	0.4089	0.080*	
C6	0.6555 (4)	0.6544 (3)	0.37959 (10)	0.0530 (7)	
C7	0.7653 (4)	0.4400 (3)	0.42768 (10)	0.0531 (7)	
C8	0.8347 (4)	0.3950 (4)	0.47242 (11)	0.0662 (8)	
H8	0.8314	0.4601	0.4987	0.079*	
C9	0.9084 (5)	0.2543 (5)	0.47808 (14)	0.0859 (11)	
Н9	0.9551	0.2256	0.5081	0.103*	
C10	0.9133 (5)	0.1569 (4)	0.43996 (18)	0.0901 (12)	

H10	0.9614	0.0618	0.4440	0.108*	
C11	0.8468 (5)	0.2008 (3)	0.39565 (13)	0.0718 (9)	
H11	0.8508	0.1347	0.3697	0.086*	
C12	0.7738 (4)	0.3412 (3)	0.38875 (10)	0.0543 (7)	
N1	0.6881 (5)	0.5818 (3)	0.42300 (9)	0.0762 (9)	
H1	0.697 (5)	0.631 (4)	0.4475 (12)	0.091*	
S1	0.69464 (12)	0.38660 (9)	0.33075 (3)	0.0718 (3)	
C21	0.6419 (4)	0.7960 (3)	0.63036 (10)	0.0486 (7)	
C22	0.6397 (3)	0.8755 (3)	0.67412 (9)	0.0457 (6)	
C23	0.6772 (3)	1.0262 (3)	0.67629 (9)	0.0458 (6)	
H23	0.6704	1.0772	0.7056	0.055*	
C24	0.7245 (3)	1.0987 (3)	0.63455 (8)	0.0427 (6)	
C25	0.7296 (4)	1.0264 (3)	0.59049 (9)	0.0480 (7)	
H25	0.7613	1.0774	0.5623	0.058*	
C26	0.6870 (4)	0.8776 (3)	0.58903 (9)	0.0478 (6)	
N2	0.5977 (4)	0.8011 (3)	0.71962 (10)	0.0636 (7)	
N3	0.7712 (3)	1.2571 (3)	0.63615 (9)	0.0562 (6)	
N4	0.6920 (5)	0.8059 (3)	0.54120 (10)	0.0714 (7)	
01	0.6062 (3)	0.6509 (2)	0.62691 (9)	0.0744 (7)	
H2	0.572 (5)	0.623 (4)	0.6589 (12)	0.089*	
O2	0.5599 (4)	0.6672 (3)	0.71851 (9)	0.0902 (8)	
O3	0.6021 (4)	0.8721 (3)	0.75672 (9)	0.0945 (8)	
O4	0.7424 (3)	1.3233 (2)	0.67420 (8)	0.0773 (6)	
O5	0.8380 (3)	1.3140 (2)	0.59996 (7)	0.0734 (6)	
O6A	0.803 (3)	0.8473 (16)	0.5120 (4)	0.118 (5)	0.54 (2)
O7A	0.576 (2)	0.7138 (16)	0.5324 (2)	0.116 (5)	0.54 (2)
O6B	0.672 (3)	0.8824 (10)	0.5057 (3)	0.109 (5)	0.46 (2)
O7B	0.717 (4)	0.6743 (8)	0.5391 (4)	0.126 (7)	0.46 (2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0421 (15)	0.0557 (17)	0.0559 (18)	-0.0024 (13)	0.0034 (14)	-0.0001 (14)
C2	0.066 (2)	0.083 (3)	0.0535 (19)	-0.0080 (19)	-0.0008 (16)	0.0050 (17)
C3	0.080 (2)	0.079 (3)	0.081 (3)	-0.004 (2)	-0.008 (2)	0.026 (2)
C4	0.068 (2)	0.0543 (19)	0.108 (3)	0.0069 (17)	-0.001 (2)	0.013 (2)
C5	0.070 (2)	0.055 (2)	0.074 (2)	0.0141 (17)	0.0044 (17)	-0.0071 (16)
C6	0.0517 (18)	0.0544 (19)	0.0529 (17)	0.0086 (14)	-0.0027 (14)	-0.0038 (13)
C7	0.0487 (17)	0.0538 (18)	0.0568 (18)	0.0030 (14)	0.0045 (14)	0.0016 (14)
C8	0.0632 (19)	0.076 (2)	0.0595 (18)	0.0041 (18)	0.0086 (16)	0.0085 (16)
C9	0.076 (2)	0.097 (3)	0.085 (3)	0.020 (2)	0.018 (2)	0.044 (3)
C10	0.091 (3)	0.063 (2)	0.116 (3)	0.021 (2)	0.029 (3)	0.031 (2)
C11	0.073 (2)	0.050 (2)	0.092 (3)	-0.0019 (17)	0.0130 (19)	0.0046 (17)
C12	0.0458 (16)	0.0477 (17)	0.0694 (19)	-0.0047 (14)	0.0077 (14)	-0.0011 (14)
N1	0.117 (2)	0.0646 (19)	0.0475 (16)	0.0315 (19)	-0.0094 (16)	-0.0129 (12)
S1	0.0836 (5)	0.0639 (5)	0.0680 (5)	0.0109 (5)	-0.0123 (5)	-0.0211 (4)
C21	0.0466 (17)	0.0352 (16)	0.0639 (19)	-0.0031 (13)	-0.0079 (13)	0.0002 (13)
C22	0.0460 (15)	0.0444 (15)	0.0465 (15)	0.0011 (12)	-0.0011 (12)	0.0046 (14)

C23	0.0501 (15)	0.0424 (15)	0.0450 (15)	0.0047 (13)	-0.0031 (13)	0.0005 (12)
C24	0.0480 (15)	0.0330 (14)	0.0469 (15)	0.0007 (13)	-0.0051 (12)	-0.0012 (12)
C25	0.0550 (17)	0.0450 (16)	0.0440 (15)	0.0011 (14)	0.0012 (13)	0.0027 (12)
C26	0.0520 (15)	0.0441 (15)	0.0473 (15)	0.0047 (15)	-0.0048 (13)	-0.0096 (12)
N2	0.0690 (16)	0.0524 (18)	0.0694 (18)	0.0041 (14)	0.0053 (14)	0.0146 (14)
N3	0.0658 (17)	0.0432 (14)	0.0597 (16)	-0.0010 (13)	-0.0043 (13)	-0.0022 (13)
N4	0.095 (2)	0.0576 (19)	0.0618 (18)	0.003 (2)	-0.004 (2)	-0.0163 (15)
01	0.0936 (16)	0.0415 (13)	0.0881 (15)	-0.0134 (12)	-0.0104 (13)	-0.0010 (11)
O2	0.118 (2)	0.0613 (16)	0.0916 (17)	-0.0266 (14)	-0.0041 (15)	0.0236 (13)
O3	0.153 (2)	0.0712 (15)	0.0594 (14)	0.0167 (17)	0.0229 (15)	0.0142 (13)
O4	0.1124 (18)	0.0496 (11)	0.0700 (14)	-0.0081 (12)	0.0071 (13)	-0.0163 (10)
05	0.1043 (18)	0.0492 (12)	0.0668 (13)	-0.0180 (12)	0.0052 (13)	0.0078 (10)
O6A	0.161 (11)	0.120 (7)	0.072 (4)	-0.036 (7)	0.029 (6)	-0.025 (4)
O7A	0.160 (10)	0.086 (7)	0.100 (4)	-0.034 (7)	-0.029 (4)	-0.035 (4)
O6B	0.176 (13)	0.101 (5)	0.049 (4)	0.027 (6)	-0.005 (5)	-0.011 (4)
O7B	0.235 (19)	0.054 (4)	0.088 (5)	0.030 (5)	0.002 (7)	-0.034 (3)

Geometric parameters (Å, °)

1.383 (4)	C12—S1	1.747 (3)
1.390 (3)	N1—H1	0.81 (3)
1.762 (3)	C21—O1	1.332 (3)
1.373 (5)	C21—C26	1.393 (4)
0.9300	C21—C22	1.401 (3)
1.375 (5)	C22—C23	1.381 (3)
0.9300	C22—N2	1.453 (3)
1.372 (4)	C23—C24	1.365 (3)
0.9300	С23—Н23	0.9300
1.390 (4)	C24—C25	1.377 (3)
0.9300	C24—N3	1.463 (3)
1.382 (3)	C25—C26	1.373 (4)
1.392 (4)	С25—Н25	0.9300
1.393 (4)	C26—N4	1.467 (3)
1.398 (4)	N2—O3	1.205 (3)
1.382 (5)	N2—O2	1.234 (3)
0.9300	N3—O5	1.221 (3)
1.367 (5)	N3—O4	1.223 (3)
0.9300	N4—07B	1.197 (8)
1.371 (5)	N4—O6B	1.205 (9)
0.9300	N4—O6A	1.197 (9)
1.381 (4)	N4—07A	1.207 (7)
0.9300	O1—H2	0.95 (3)
120.4 (3)	C7—N1—H1	113 (2)
117.0 (2)	C12—S1—C1	102.40 (14)
122.6 (2)	O1—C21—C26	120.1 (3)
120.3 (3)	O1—C21—C22	123.9 (3)
119.9	C26—C21—C22	116.0 (2)
119.9	C23—C22—C21	122.3 (2)
120.0 (3)	C23—C22—N2	117.1 (2)
	$\begin{array}{c} 1.383 (4) \\ 1.390 (3) \\ 1.762 (3) \\ 1.373 (5) \\ 0.9300 \\ 1.375 (5) \\ 0.9300 \\ 1.375 (5) \\ 0.9300 \\ 1.372 (4) \\ 0.9300 \\ 1.390 (4) \\ 0.9300 \\ 1.390 (4) \\ 0.9300 \\ 1.392 (4) \\ 1.393 (4) \\ 1.393 (4) \\ 1.398 (4) \\ 1.398 (4) \\ 1.382 (5) \\ 0.9300 \\ 1.367 (5) \\ 0.9300 \\ 1.367 (5) \\ 0.9300 \\ 1.381 (4) \\ 0.9300 \\ 120.4 (3) \\ 117.0 (2) \\ 122.6 (2) \\ 120.3 (3) \\ 119.9 \\ 119.9 \\ 119.9 \\ 120.0 (3) \end{array}$	1.383 (4) $C12-S1$ 1.390 (3) $N1-H1$ 1.762 (3) $C21-O1$ 1.373 (5) $C21-C26$ 0.9300 $C21-C22$ 1.375 (5) $C22-C23$ 0.9300 $C22-N2$ 1.372 (4) $C23-C24$ 0.9300 $C23-H23$ 1.372 (4) $C24-C25$ 0.9300 $C24-N3$ 1.382 (3) $C25-C26$ 1.392 (4) $C25-H25$ 1.393 (4) $C26-N4$ 1.398 (4) $N2-O3$ 1.382 (5) $N2-O2$ 0.9300 $N3-O5$ 1.367 (5) $N3-O4$ 0.9300 $N4-O6B$ 0.9300 $N4-O6B$ 0.9300 $N4-O7A$ 0.9300 $01-H2$ 120.4 (3) $C7-N1-H1$ 117.0 (2) $C12-S1-C1$ 122.6 (2) $01-C21-C26$ 120.3 (3) $01-C21-C22$ 119.9 $C23-C22-C21$ 120.0 (3) $C23-C22-N2$

С2—С3—Н3	120.0	C21—C22—N2	120.7 (2)
С4—С3—Н3	120.0	C24—C23—C22	118.7 (2)
C5—C4—C3	120.1 (3)	С24—С23—Н23	120.6
C5—C4—H4	120.0	С22—С23—Н23	120.6
C3—C4—H4	120.0	C23—C24—C25	121.6 (2)
C4—C5—C6	121.1 (3)	C23—C24—N3	119.8 (2)
С4—С5—Н5	119.5	C25—C24—N3	118.6 (2)
С6—С5—Н5	119.5	C26—C25—C24	118.6 (2)
N1—C6—C5	119.7 (3)	С26—С25—Н25	120.7
N1—C6—C1	122.0 (3)	С24—С25—Н25	120.7
C5—C6—C1	118.2 (3)	C25—C26—C21	122.8 (2)
C8—C7—C12	118.7 (3)	C25—C26—N4	116.6 (3)
C8—C7—N1	119.5 (3)	C21—C26—N4	120.6 (3)
C12—C7—N1	121.8 (3)	O3—N2—O2	122.9 (3)
C9—C8—C7	120.4 (3)	O3—N2—C22	118.8 (3)
С9—С8—Н8	119.8	O2—N2—C22	118.3 (3)
С7—С8—Н8	119.8	O5—N3—O4	124.4 (2)
С10—С9—С8	120.6 (3)	O5—N3—C24	118.3 (2)
С10—С9—Н9	119.7	O4—N3—C24	117.3 (2)
С8—С9—Н9	119.7	O7B—N4—O6B	122.8 (7)
C9—C10—C11	119.4 (3)	O7B—N4—O6A	99.9 (7)
С9—С10—Н10	120.3	O6B—N4—O6A	50.1 (4)
C11—C10—H10	120.3	O7B—N4—O7A	54.6 (6)
C10-C11-C12	121.4 (3)	O6B—N4—O7A	98.1 (7)
C10-C11-H11	119.3	O6A—N4—O7A	123.2 (7)
C12—C11—H11	119.3	O7B—N4—C26	118.7 (6)
C11—C12—C7	119.5 (3)	O6B—N4—C26	118.5 (5)
C11—C12—S1	117.8 (2)	O6A—N4—C26	119.0 (5)
C7—C12—S1	122.8 (2)	07A—N4—C26	117.7 (6)
C6—N1—C7	125.3 (2)	С21—О1—Н2	104 (2)
C6—N1—H1	119 (2)		
C6—C1—C2—C3	-1.5 (5)	C26—C21—C22—C23	0.9 (4)
S1—C1—C2—C3	175.6 (3)	O1—C21—C22—N2	0.3 (4)
C1—C2—C3—C4	0.4 (5)	C26-C21-C22-N2	-178.9 (2)
C2—C3—C4—C5	1.2 (5)	C21—C22—C23—C24	-2.4 (4)
C3—C4—C5—C6	-1.7 (5)	N2—C22—C23—C24	177.4 (2)
C4—C5—C6—N1	-177.5 (3)	C22—C23—C24—C25	2.2 (4)
C4—C5—C6—C1	0.6 (5)	C22—C23—C24—N3	-177.8 (2)
C2-C1-C6-N1	179.0 (3)	C23—C24—C25—C26	-0.4 (4)
S1—C1—C6—N1	2.1 (4)	N3—C24—C25—C26	179.6 (2)
C2—C1—C6—C5	1.0 (4)	C24—C25—C26—C21	-1.1 (4)
S1—C1—C6—C5	-175.9 (2)	C24—C25—C26—N4	179.2 (3)
C12—C7—C8—C9	-0.8 (4)	O1—C21—C26—C25	-178.3 (3)
N1—C7—C8—C9	178.8 (3)	C22—C21—C26—C25	0.9 (4)
C7—C8—C9—C10	-0.4 (5)	O1—C21—C26—N4	1.3 (4)
C8—C9—C10—C11	1.0 (6)	C22—C21—C26—N4	-179.5 (3)
C9—C10—C11—C12	-0.4 (6)	C23—C22—N2—O3	-1.9 (4)
C10—C11—C12—C7	-0.8 (5)	C21—C22—N2—O3	177.9 (3)
C10-C11-C12-S1	179.4 (3)	C23—C22—N2—O2	178.5 (3)

C8—C7—C12—C11	1.4 (4)	C21—C22—N2—O2	-1.7 (4)
N1-C7-C12-C11	-178.2 (3)	C23—C24—N3—O5	169.7 (2)
C8—C7—C12—S1	-178.9 (2)	C25—C24—N3—O5	-10.3 (4)
N1—C7—C12—S1	1.5 (4)	C23—C24—N3—O4	-9.4 (4)
C5—C6—N1—C7	-167.0 (3)	C25—C24—N3—O4	170.6 (2)
C1—C6—N1—C7	15.1 (5)	C25—C26—N4—O7B	155.5 (15)
C8—C7—N1—C6	163.4 (3)	C21—C26—N4—O7B	-24.2 (16)
C12—C7—N1—C6	-17.0 (5)	C25—C26—N4—O6B	-24.1 (14)
C11-C12-S1-C1	-169.1 (2)	C21—C26—N4—O6B	156.2 (14)
C7—C12—S1—C1	11.2 (3)	C25—C26—N4—O6A	33.6 (14)
C2-C1-S1-C12	169.9 (2)	C21—C26—N4—O6A	-146.0 (13)
C6—C1—S1—C12	-13.0 (3)	C25—C26—N4—O7A	-141.9 (11)
O1—C21—C22—C23	-179.9 (3)	C21—C26—N4—O7A	38.5 (12)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
N1—H1···O6A	0.81 (3)	2.74 (4)	3.520 (7)	162 (3)
N1—H1…O6B	0.81 (3)	2.77 (3)	3.533 (8)	157 (3)
N1—H1···O7A	0.81 (3)	2.60 (3)	3.339 (10)	151 (3)
N1—H1…O7B	0.81 (3)	2.56 (3)	3.311 (11)	156 (3)
O1—H2···O2	0.95 (3)	1.69 (3)	2.550 (3)	148 (3)

